DIFFERENTIAL EFFICIENCIES UNDER SRI: PRELIMINARY RESULTS FROM RESEARCHER- MANAGED AND WATER- AND LABOUR-ADEQUATE SITUATIONS IN TANJORE DISTRICT, TAMIL NADU STATE, INDIA

K. Palanisami

Director, IWMI-Tata Water Policy Research Programme IWMI South Asia Regional Office, Hyderabad

&

C. R. Ranganathan Senthilnathan Tamil Nadu Agricultural University, Coimbatore

Data sources

- Farmer Participatory Action Research Program (FPARP), Ministry of Water Resources
- Location: Thanjavur district of Tamil Nadu
- Primary data from 2007 Rabi season
- 60 farmers randomly selected:
 - 30 SRI, and
 - 30 Non-SRI

Approach

- Econometric model: Stochastic frontier function
- *Technical efficiency* is the ability to produce maximum output with a given quantity of inputs. It is the ratio of actual output to maximum possible output.
- Allocative efficiency refers to the ability of choosing optimal input levels for current output at given factor prices.
- *Economic efficiency* is the product of technical and allocative efficiency.

Methodology

Stochastic Frontier

The following equation denotes the production frontier in the matrix form:

$$Y_i = f(X; \beta) \exp {(v_i - u_i)}$$
; $i = 1, 2,n$

Where:

- Y_i = the output of the ith farm
- X_i = inputs for the ith farm
- β = the vector of parameters to be estimated
- vi = the symmetric component of the error term
- ui = the non-negative random variable which is under the control of the farm

Technical Efficiency

Farm-specific estimates of technical efficiency are defined by:

$$TE_{i} = E\left\{\exp\left(-u_{i}/\varepsilon_{i}\right)\right\} = \frac{1-\Phi\left[\sigma_{u_{i}}^{*} + \gamma\varepsilon_{i}/\sigma_{u_{i}}^{*}\right]}{1-\Phi\left[\gamma\varepsilon_{i}/\sigma_{u_{i}}^{*}\right]} \exp\left(\gamma\varepsilon_{i} + \frac{1}{2}\sigma_{u_{i}}^{*2}\right)$$

Where \$\Phi\$ is the cumulative function of the standard normal variable

$$\sigma_{u_i}^{\ \ *} = \sqrt{\gamma(1-\gamma)}\sigma_{\varepsilon}^{\ 2}$$
 is an estimated parameter of the conditional distribution

Allocative Efficiency

The stochastic cost frontier is given by

$$\ln c_i = C(y_i, w_i; \beta) + v_i + u_i$$

Where:

 c_i = the observed cost of production for the ith farm,

C = the deterministic kernel (such as Cobb-Douglas form),

 w_i = a vector of prices of input variables,

 β = a vector of unknown parameters to be estimated,

 v_i = a two-sided error term representing statistical noise, and

 u_i = a non-negative cost-inefficiency effect.

Results and Discussion

Sample mean of resources used (per ha)

Variables	SRI	Conventional	% Difference
Seed rate (kg)	7.5	81.16	-90.8
Fertilizer (NPK in kg)	339.96	367.85	-7.6
Human labour (man-days)	184.88	166.38	+10.8
Water use* (mm)	845	1,240	-32.8
Yield (tons)	6.61	5.43	+21.7

^{*} excluding effective rainfall

Sample mean of resources used (per ha basis)

Economics of rice production (Rs. per ha)

Particulars	SRI	Conventional	% difference	
Seeds & nursery	592	1,515	- 60.9	
Human labour	12,242	9,983	+22.6	
Machine power	3,495	4,136	- 15.5	
Agro chemicals	927	1,698	- 45.0	
Fertilizers	3,060	3,311	- 7.6	
Manures	1,325	2,466	- 46.3	
Total cost	21,640	23,107	- 6.4	
Total income	42,965	35,295	+21.7	
Net income	21,325	12,188	+75.0	

Economics of rice production

Distribution of technical, allocative & economic

efficiencies

Efficiency	SRI			Conventional		
(%)	Technical	Allocative	Economic	Technical	Allocative	Economic
(70)	efficiency	efficiency	efficiency	efficiency	efficiency	efficiency
0 to 19	-	-	-	1 (3)	_	7 (23)
20-29	-	-	-	1 (3)	8 (27)	15 (50)
30-39	-	-	-	0 (0)	17 (57)	8 (27)
40-49	-	-	-	2 (7)	4 (13)	-
50-59	-	-	2 (7)	1 (3)	1 (3)	-
60-69		3 (10)	9 (30)	3 (10)	-	-
70-79	1 (3)	23 (77)	18 (60)	12 (40)	-	-
80-90	6 (20)	4 (13)	1 (3)	5 (17)	-	-
90-95	20 (67)	-	-	2 (7)	-	-
>95	3 (10)	-	-	3 (10)	0	-
Total	30 (100)	30 (100)	30 (100)	30 (100)	30 (100)	30 (100)
Mean (%)	92	76	70	73	35	25
Minimum (%)	73	67	56	10	26	5
Maximum (%)	98	85	82	99	51	37

Figures in parenthesis denote the percentage to the total number of farmers

Distribution of Technical Efficiency

Distribution of Allocative Efficiency

Distribution of Economic Efficiency

Conclusion

- > SRI farms are comparatively more efficient
- > Cost reductions are not significant
- Increased yield primarily makes SRI attractive
- Sustained yield & prices will decide the future of SRI
- > More studies are needed on:
 - Cost reductions aspects
 - Sustainability aspects

Thank You All