SRI: An Analysis of Adoption Levels Across 13 States, India? K Palanisami, K R Karunakaran, Upali Amarasinghe, C R Ranganathan

Published in EPW -Economic & Political Weekly, February 23, 2013 vol xlviii 52 no 8.
The study was undertaken as part of the IWMI-Tata Water Policy Program

- Introduction
- Rice Production in India
- Issues in SRI
- Methodology
- SRI and core components
- Yield and Profitability of SRI
- Transaction cost
- Factors of adoption Multinomial logit model
- How we can Targeting adoption of SRI components at region/soil
- Conclusion and policy suggestions

Area, Production, and Yield of Rice during 2012-2013 in major producing states alongwith coverage

Past studies

- Claims of yield increase are still being debated
- Profitability and Inconsistent of trail results (Glover, 2001)
- productivity claims go beyond the physiological yield potential of rice (Dobermann 2004)
- Yield increase and reduced water use confirmed by various studies (Latif et al 2009, 2005; Thakur et al 2009; Kumar Sinha and Talati 2007; Sitadevi and Ponnarasi, 2009; Barah, 2009; Karunakaran et al 2010; Adusumilli and BhagyaLaxmi, 2011 and Glover, 2011).

Missing:

?1 insight of actual levels of adoption in different regions?2 whether to promote core components of SRI as a package or only some of the components with modifications for better adoption.

Objectives of the present study address

- i) yield, income and cost advantage of SRI over non-SRI practices,
- ii) level of adoption of different components of SRI by the farmers,
- iii) drivers of SRI adoption, and
- iv) constraints faced by the farmers in the adoption of the SRI

Study area and Sampling

• Year 2010-11 in 13 states cover 2234 farmers from

Southern regions (Andhra Pradesh, Karnataka, Tamil Nadu and Kerala states),

Western region (Gujarat, Rajasthan, Maharastra states),

Eastern region (Orissa, Uttarpradesh, West Bengal states),

Central region (Madya Pradesh and Chhattishgarh state) and

North eastern region (Assam).

• Local Extension officials & NGOs 70; Scientist associated with SRI progm 40 and 120 key farmers-

	Conventional	Criteria for Core components of SRI adoption					
Concept of Core components	Conventional	Full adopter-	Partial adopter-	Low adopter-			
	method	Score=3	Score=2	Score=1			
Younger seedlings (days) Y	35-45 days	<15	16-20	>20			
Number of seedlings O	>4	1	2-3	>3			
Square planning (cm) S	15x10 or 15x 15cm	22.5x22.5	Row planting>20	Row planting 15x10 or 20x10			
Intercultural operation	Manual	>2times	1 time	Nil			
Adoption Class (sum of scores)		12	7-11	6			

 $_{60}$ Non-SRI yield at different adoption level (q/ha)

Low Partial Full

Differences of yield, cost, gross value of outputs across various adoption levels

N=2236		Differences betwee	en SRI and non-SRI parcels	
Fully adopt. Components	Sample size	Yield (q/ha)	Cost of production (Rs/q)	Gross value of output (Rs/ha)
C1,C2,C3,C4	393	11.2	-179	9,592
C2,C3,C4	76	8.7	-112	8,067
C1,C3,C4	57	7.9	-82	9,601
C1,C2.C4	35	17.5	-18	8,478
C1,C2,C3	93	13.0	-171	9,706
C3,C4	185	6.7	-8	6,077
C2,C4	10	10.3	88	5,094
C2,C3	38	10.9	-87	12,256
C1,C3	14	9.9	-70	8,463
C1,C2	29	12.8	-94	11,440
C4	97	10.3	-231	9,015
С3	20	11.2	47	15,885
C2	41	6.9	-16	7,059
C1	41	8.5	-258	8,640
No full adoption of any				
components	1105	6.6	-196	4,676

Note: C1: young seedling; C2: single seedling; C3: square planting; C4: Intercultural

Difference of SRI and non-SRI yields across regions and adoption levels

Full adoption of	ull adoption of Yield difference of Sri and non-SRI parcels across regions and adoption levels ¹ (q/ha)												
components	South		West		East		Central		North east				
	Low	Partial	Full	Low	Partial	Full	Low	Partial	Full	Low	Partial	Full	Low
C1,C2,C3,C4		8.4			8.1			8.8			9.9		
C2,C3,C4		13.5			6.4			8.8			0.0		
C1,C3,C4		10.7			4.9			12.4			19.7		
C1,C2.C4		15.5			13.1			13.9			10.2		
C1,C2,C3		17.3						6.4					
C3,C4		10.3			9.9								
C2,C4		12.2			10.2			10.7					
C2,C3		11.4						9.9			2.5		
C1,C4		13.9						12.2					
C1,C3		4.2			2.5			12.8			6.6		
C1,C2		15.2									-0.3		
C4	-5.0	20.0			5.0			7.2			7.2		
С3					4.0			8.4		7.8	17.5		
C2	7.1			22.5			6.4	1.6			5.0		
C1	6.9	11.7		3.1			13.0	4.5		2.0	4.8		4.1
No full adoption		8.4			8.1			8.8			9.9		

Transaction cost for adopting SRI core components

	Southern	Western	Eastern	Central	North	All India
	region	region	region	region	Eastern	
State/Zone						
C1,C2,C3,C4	653		640	710		655
C2,C3,C4	610		495			564
C1,C2,C4	613		630	680		630
C1,C2,C3	600	580	650	670		621
C3,C4	610					610
C2,C4	550	630	475	360		513
C2,C3	540		410			508
C1,C3	570	610	517	560	640	569
C1,C2	425	560	437	560	420	463
C4	408		435			417
С3	415	320	370	218	230	336
C2	260	460	462	540	230	386
C1	400	235	279		340	322
No full adoption of any	280	190	230	310	200	250
components						

Note: Estimated the cost based on the imputed value of efforts taken by the farmers and managerial time spent on logistic arrangements required to implement the SRI components or its combination

Multinomial logit model

Factors influencing adoption levels of SRI components in different regions

	Easte	ern	Cent	tral	Southern		Western
variables	Partial	Full	Partial	Full	Partial	Full	Partial
Constant	4.776	1.470	2.092	-15.548	25.206	14.705	-23.866
Farming experience (yrs)	0.014	0.041	038	070	.032	.040	101***
Total Family labour (days/yr)	007***	-0.004**	.016	.011	003	006**	004
Black soil	-1.766**	-0.562	21.473	22.717	1.650	.862	21.723***
Clay soil	-3.239***	0.064			-10.123	-12.279	
Red Soil			18.040	35.752	-9.277	-8.878	
Clay loam soil	0.827	0.307	19.052	36.134	-9.638	-10.935	27.109
Surface irrigation	0.495	417	-2.024	-3.348	-11.633	-1.212	4.059*
Ground water irrigation	-1.795**	-1.123	15.732	-1.186^{*}	-9.915	032	4.880***
Conjunctive irrigation	0.076	1.310			-11.576	-1.577	1.762
Model accuracy- Prediction %	88		85		81		84
Note: Low adopter is reference category. *** Significant at 1% level; **Significant at 5% level; * Significant at 10% leve							

Best suited SRI components and Soil types						
States	SRI components	Soil type				
Andhra Pradesh	C1,C2,C4	Sandy loam				
Karnataka	C1,C2,C4	Black				
Kerala	C1,C2,C3,C4	Red				
Tamil Nadu	C1,C2,C3,C4	Clay				
Gujarat	C1,C2,C3	Black				
Rajasthan	C3	Black				
Maharashtra	C1	Clay loam				
Orissa	C2	Clay loam				
Chhattisgarh	C1,C2,C4	Black				
Uttar Pradesh	C1,C3	Clay loam				
West Bengal	C2,C3,C4	Sandy loam				
Madhya Pradesh	C1,C2,C4	Clay loam				
Assam Though the irrigation sources (such as surface or groundwater) are important for better SRI adoption, it is varying from tion to location and hence could not make any inference about the suitability of a particular irrigation source for SRI adoption						

Conclusions and policy recommendations

Yield Advantage

- The average yield increase to 22% in SRI parcels. Sothern region dominating in rice production reported 18% increase. Western and Central region had Lowest yield in non-SRI have 29 and 52% higher yields in SRI parcels- need upscale the SRI
- SRI can have significant yield benefits in most regions

SRI Adoption status

- low adoption (41%) and partial adoption (39%) in all the region.
- But yield increase was 31% in in full adoption (all 4 components), 25% in partial and 15% in low adoption categories.

Cost and returns in SRI:SRI had higher gross margin of Rs 7000/ha and lowered the cost of production to Rs 178/q

Modification :need due to surface and groundwater supplies, soil type, drought/flooding and skilled labour availability. Two seedling against one, 15-18 days against 12 days, machine transplanting and one/two intercultural operation with power weeder enhance the up-scaling of SRI ideas in the potential western and central regions

Constraints: Lack of skilled man power, poor water control, high transaction cost towards mobilizing the resources for SRI/modified SRI –addressed through cluster approach and forming SRI groups/ SHGs'

Key policy recommendations

- Yield Advantage: With the current rice area of 42 mha study result rise the hope to get additional rice production of 30 mt from Easter region (56%), Southern (27%). The suggestions are;
- Selective SRI components: most of the farmers are low or partial adopter. Develop the package with set of selective components for each region/ state which give highest yield advantage and low COP
- **Doing it differently:** modifying the SRI to suit farmers choices resulting yield advantage help them to do own way to suit the filed condition and resource availability
- **Target location / region:** Identify the suitable area using GIS considering the soil and irrigation constraints
- Machine transplantation: using the concept of wider spacing, young seedling, one to two seedlings reduce the skilled labour demand. Power weeder also be explored to reduce cost and labour scarcity
- Capacity building: farmer training and supply of power/ cono weeder attract more farmers to SRI
- Long term field experimentation: Yield variation across region, soil and irrigations need long term field experimentation with different SRI practices for getting better recommendation

