SRI- EVALUATION FOR ITS POTENTIAL TO ENHANCE PRODUCTIVITY OF RICE AND ITS IMPACT IN INDIA

R.Mahender Kumar, K. Surekha, Ch. Padmavathi, B.Sreedevi, B.Gangaiah, N. Somashekhar, M.S.Prasad, V.Ravindrababu, P.Raghuveer Rao, P.C.Latha, L.V.Subbarao, B. Sailaja, Sudhaker, Santhappa, P.Muthuraman, Shaik N. Meera, B.Nirmala and B. C. Viraktamath

Directorate of Rice Research Rajendranagar, Hyderabad – 500 030 (A.P.)

About DRR

pdrice@drricar.org Project Director Directorate of Rice Research, Rajendra Nagar, Hyderabad www.drricar.org

Population, production of food grains and rice Trends and Projections

Challenges for enhancing rice production

Declining resource base

Land

Water

Labour

- Deteriorating soil health
 Increasing environmental concerns
 - **Increasing cost of cultivation**

भाकृ अनुप CAR

Among these water is becoming a critical factor

Water – A critical limiting factor for rice production in future Rice and Water

- 80% of fresh water is used for agriculture.
- More than 50% of this is consumed by the rice crop.
- Rice consumes about 4000-5000 ltr. of water to produce 1 kg of grain.
- Irrigated Rice cannot be ignored as it contributes significantly to food security.
- Little scope to save water from other irrigated dry crops.

Hence pressure would be on ric cultivation to cut down the wate requirement.

1 kg seed = 5000 kt of water (one tanker)

Prof Norman's presentation at International Agronomy Conference At IARI 2002

Dr. Alapati Satyanarayana's SRILANKA visit,2004

Highest yields reported by Mr. Nagaratnam Naidu, 2004-05

Major Accomplishments SRI

Aspects covered from 2004

- Evaluation of methods
- Time of transplanting
- Varietal evaluation
- Effect of each principle

- Long term effects of SRI
- Water quantification
- Modification of SRI
- Delineation of SRI potential areas
- Impact and future work

Multilocation Trials on SRI under AICRIP

* Multilocation trials on SRI under AICRIP were conducted during kharif 2004 to 2007 ScasePor Locations - 21

State	Location
Andhra Pradesh	Rajendranagar (Hyderabad)
Assam	Karimgunj, Titabar
Bihar	Patna, Sabour
Chhattisgarh	Jagdalpur
Gujarat	Nawagam
Himachal Pradesh	Malan
Jharkhand	Ranchi
Karnataka	Mandya, Siriguppa

Multilocation Trials on SRI under AICRIP

State	Location
Orissa	Chiplima
Punjab	Kapurthala
Pondicherry	Karaikal
Tamil Nadu	Aduthurai, Coimbatore
Tripura	Arundhatinagar
Uttar pradesh	Varanasi
Uttaranchal	Pantnagar, Almora
Meghalaya	Umiam

Multi-location trials on SRI

Effective comparison among the following methods (*Kharif* 04 -07)

System of Rice Intensification (SRI)
Integrated Crop Management (ICM)
Normal Recommended Transplanting (NTP)

Summary of Multi location trials (2004-2007)

1.SRI superior over NTP.5 - 65.2 %19ADT, ARI, ARD, JGD, KRT, PTN, RNG, SRG, TTB, CHT, CBT, PNT, UMM, MLN, MND, MTU, NWG, PSA3.SRI superior over ICM5-10 %17SRG, RNC, PTN, NWG, ARD, ARI, RPR, KRJ, JGD, CHT, ADT, UPS, PDY, MTU, MND, CBT, ALM4.ICM over SRI5-10%5KRK, KRG, CHP, SBR, KPT5.STD over SRI5-10%3KPT, KRK, SBR	<mark>S N</mark> o	nefI	Yield Adv	No. of loca- tions	Name of the locations	
3.SRI superior over ICM5-10 %17SRG, RNC, PTN, NWG, ARD, ARI, RPR, KRJ, JGD, CHT, ADT, UPS, PDY, MTU, MND, CBT, ALM4.ICM over SRI5-10%5KRK, KRG, CHP, SBR, KPT5.STD over SRI5-10%3KPT, KRK, SBR	1.	SRI superior over NTP.	5 - 65.2 %	19	ADT, ARI, ARD, JGD, KRT, PTN RNG, SRG, TTB, CHT, CBT, PN UMM, MLN, MND, MTU, NWG, PSA	ι, Γ,
4. ICM over SRI 5-10% 5 KRK, KRG, CHP, SBR, KPT 5. STD over SRI 5-10% 3 KPT, KRK, SBR	3.	SRI superior over ICM	5-10 %	17	SRG, RNC, PTN, NWG, ARD, ARI, RPR, KRJ, JGD, CHT, ADT UPS, PDY, MTU, MND, CBT, ALM	
5. STD over SRI 5-10% 3 KPT, KRK, SBR	4.	ICM over SRI	5-10%	5	KRK, KRG, CHP, SBR, KPT	
	5.	STD over SRI	5-10%	3	KPT, KRK, SBR	

Mean Grain yield increase under SRI and ICM over NTP

Year/Seas	SRI over	ICM over
no	<mark>NТ</mark> Р	NTP
<i>Kharif</i> 04	12.0	10.0
<i>Kharif</i> 05	7.0	5.0
<i>Kharif</i> 06	12.0	6
<i>Kharif</i> 07	20.5	14.1
Over all GY	12.6	8.8

Performance of cultivation methods in different locations Kharif 2007

Effect of crop establishment methods on grain yield (Mean of 18 locations) [additional 0.8 q]

R=.732**; Note –%Increase in grain	R=.187ns; % increase in panicle wt
yield SRI over standard Normal	has no relation ship with % increase
Transplanting practice is related to %	in grain yield of SRI over standard
increase in panicles/sq.m of SRI over	Practice
standard practice.	

Effect of different establish methods rice grain yield in India. (Kharif-2006&2007)

																n
	anagar	ai	ра	παιαικαι	u	m	παιjαι	Chatha		Chipinna	r	Offilam	Ranon	Ivialari	mean	k
T1	4.38	4.35	5.53	4.12	4.68	4.63	5.52	6.90	4.24	4.87	4.87	4.75	4.81	5.81	4.96	5
T2	5.55	6.72	7.21	3.53	4.76	6.29	5.84	7.74	4.87	5.45	4.97	5.42	5.56	6.42	5.74	1
T3	4.80	6.37	6.66	3.85	4.81	5.22	5.81	7.11	4.49	5.38	4.14	5.42	5.51	6.66	5.44	3
T4	4.26	4.48	5.70	3.59	4.60	4.73	5.35	6.73	4.09	4.92	4.61	4.75	4.76	5.89	4.89	6
T5	4.25	6.67	7.16	4.49	4.71	5.79	5.56	7.45	4.68	5.33	5.17	5.48	5.33	5.17	5.52	2
T6	4.39	6.44	6.84	3.51	5.12	4.92	5.51	6.70	4.37	5.39	4.24	5.67	5.38	5.20	5.26	4
	•								•			<u> </u>		•	•	
Standard practice of transplanting with 20 X 10 cm (Nursery dates are same)										Т						
System	of Rice Ir	ntensifica	ation (SR	I) with 25	5x25 cm											
(Nursery	/ dates ar	re same)						nurse	ery dares a	re same			5.38			
Integrate	ed crop m	nanagem	ient (ICM	l) with 20) x 20											
cm (Nur	sery date	s are sa	me)					Transpla	anting date	es are same	<u>j</u>		5.22			
Standar (Transp	d practice lanting da	e of trans ates are s	planting same)	with 20 X	X 10 cm											
System (Transp	of Rice Ir	ntensifica	ation (SR	I) with 25	5x25 cm											Т
Integrat			ent (ICM	I) with 20	x 20 cm	1										
(Transp	lanting da	ates are s	same)	i) with 20	7 20 ON	•										
		SS		DF		MS	F	SEM	SED	CD 0.05	CD 0.01	CV %				
Treatme		7.62460				1.52492	8.64796	0.11222	2 0.158714	0.316975	0.421166	5 7.920490				
nt		704		5		141	106	6 842	2 954	1 648	709) 12				
Replicati		56.5260				4.34815	24.6587	,								
on		27		13		593	679									_
L		11.4616				0.17633										
Error		487		65		306										
Total		/5.6122 878		22												
- Otur		020		05												

SRI principles

Effect of age of seedlings on grain yield under system of rice intensification in India (Kharif, 2009)

Effect of age of seedlings on grain yield under system of rice intensification in India (Rabi/ 2009 &2010)

:Effect of weed management methods on grain yield under system of rice intensification inIndia (Kharif, 2009 & 2010)

Varieties as influenced by for SRI method

Early maturity

Early maturity of cultivars

Genotype response to SRI (across locations)

Grain yield t/ ha - Elite cultures Rabi 2012-13

Kharif

Plate 4.1. Effect on root anatomy of different rice varieties under SRI and NTP methods of cultivation for *kharif*

174

Bharghavi, ANGRAU

SPAD readings as influenced by SRI method

Major insect pests & their damage recorded include:

- 1. Yellow stem borer both dead hearts & White ears
- 2. Gall midge silver shoots
- 3. Leaf folder damaged leaves
- 4. Brown planthopper Number found on 10 hills
- 5. Whorl maggot & Thrips damaged leaves

		ALL GLASSING	
An and the second se		e service pression	
		A REAL PROPERTY AND INCOME.	the second s
	Influence of Rice Cultivation System		1
WINDER AND TO AN ALL MAD	(IRCP) Design Split plut Design Replications 007 A. Main Flat (Neuron A.	CALLS AND A VIEW	
WAS PARTENAN FOR	SL.Narmal system of calification SL.Narmal system of calification Date of unwined system		Sala Maria Carlo
ANN SAME AND	Date of planing 23.07.09 Date of planing 276.07.09 Date of planing 07.08.09 B. Sab Par (Variet) 07.08.09	物和人民的利用	
NE ANNAL CHURCHAR	VI. Hybrid WERDA444 V2. High Viciding Wert		
NUMARIA CONTRACTOR			1426.3
SAME ANNA			
			Contraction of the second
a la solar	SSN ANE	STT.	
	1200 ANDAR	MANALES	

Details of experimental locations across India - year wise

Location	Year	Cultivation methods
Rajendranagar (RNR)	2006 - 2009	Normal & SRI
Warangal (WGL)	2006 -2007	Normal & SRI
Ragolu (RGL)	2007 - 2009	Normal & SRI
Aduthurai (ADT)	2006 - 2007	Normal & SRI
Coimbatore (CBT)	2008	Normal & SRI
Siruguppa (SGP)	2006	Normal & SRI
Jagdalpur (JDP)	2006 - 2007	Normal & SRI

Acrossthelocations,deadheartswerefoundhighinnormalmethodascompared toSRI

Similarly,whiteearswerealsofoundhighinnormalmethodthaninSRImethodinin

Gallmidgedamagewaslowinmethodthaninnormalmethodthan

Leaf folder damage was also found high in normal method except at Aduthurai wherein significantly high leaf folder damage was recorded in SRI method

BPH incidence was low in SRI method as compared to normal method which could be mainly due to the wider spacing and

However, early stage pests like whorl maggot and thrips damage was high in SRI method. As early in the season, SRI plants are of young age, need to be cautious about these pests

Conclusion

In general, the insect pest incidence was low in SRI method as against normal transplanted method

Experiment at ICRISAT, WWF collaboration

Grain Yield increase by 10% in SRI
Water Use decreased by 29% (SRI 79 Cum)
Water Productivity by 46%

Water productivity as influenced SRI vs

Amount of water (lit) required for raising per one kg seed and % water saving during 2008K, 2008/09R, 2009K and 2009/10 R.

Water input and water use efficiency in different methods of rice cultivation

Effect of establishment methods on soil enzyme activity (0-15 cm)

Treatments	Glucosidase	Phosphatase	Arylsulfatase	Arginine	Dehydrogenas			
	activity*	activity**	activity**	Ammonification***	e activity****			
Method of establishment								
SRI	91.24	1.23	7.61	4.90	133.00			
NTP	51.18	1.18	7.35	4.37	126.93			
CD (0.05)	11.91	NS	NS	NS	NS			
Fertilization		-	-					
Control	16.42	0.74	6.65	3.22	73.30			
100% organic	97.69	1.69	8.04	5.71	145.83			
75% organic + 25%	06.20	1 20	7 0 7	E OG	144.00			
inorganic	90.29	1.59	7.02	5.00	144.00			
50% organic + 50%	51 79	1 23	7 56	5.02	141 33			
inorganic	51.75	1.25	7.50	5.02	141.33			
25% organic + 75%	46.62	1.04	7 24	1 01	127 72			
inorganic	40.02	1.04	7.24	4.94	127.72			
100% inorganic	44.32	1.15	7.57	3.87	126.50			
CD (0.05)	10.60	0.20	2.77	NS	47.77			
CD (0.05)	14.99	0.28	0.39	2.96	NS			
Main x Sub		0.20						

* μg *p* -nitrophenol/g soil/h, ** mg *p*- nitrophenol/g soil/h, *** μg NH₄-N/g soil/h, **** μg TPF/g soil/h Glucosidase - carbon cycling ; Phosphatase – phosphorus cycling ;Arylsulfatase – sulfur cycling Arginine ammonification – index of N mineralization ;Dehydrogenase activity – indicator of total microbial activity

Water management (31-53 % % saved)

Water saving potential of the SRI over other methods

Available soil nutrient status

Available soil nutrient status as influenced by methods of crop establishments

NUTRIENT USE EFFICIENCY IS HIGHER IN SRI VS NORMAL TP METHOD

Treatments	рН	EC (dS/m)	SOC (%)	Available N (kg/ha)	Available P ₂ O ₅ (kg/ha)	Available K ₂ O (kg/ha)
Eco-SRI	8.51	0.50	1.10	247.0	204	674
SRI	8.43	0.51	1.25	272.0	258	638
Convent						
ional	8.44	0.51	1.18	251.0	256	609
Mean	8.44	0.51	1.18	257	239	641
C.D(0.05)	NS	NS	NS	NS	26	34

Soil properties after 2 seasons as influenced by different crop establishment methods Experiments were conducted at Directorate of Rice Research, Hyderabad, India during 2008-10 (4 seasons) to assess the potential of System of Rice Intensification (SRI) in comparison to standard normal transplanting (NTP) under flooded condition.

*Long term studies clearly indicated that grain yield was significantly higher in SRI-organic + inorganic (12–23% and 4–35% in *Kharif and Rabi* seasons, respectively) while in the SRI-organic, the yield

was found higher (4–34%) only in the Rabi seasons over NTP.

*Sustainable yield indices (SYI = Y - σ /Ymax) were computed based on the 4 years of grain yield recorded over the years clearly indicated the superiority of SRI -0.56 (inorganic + organic) over Normal transplanted -0.52 with similar inputs

Identification of suitable areas for SRI cultivation

CALCULATING SRI SUITABILITY

ASSUMPTIONS

- Irrigated Rice Areas
- Soil Texture
 - HS: Heavy Soils = Poor Drainage
 - LS: Light Soils = (Good Drainage)
- Slope
 - Flat = Poor Drainage

Ŧ

- Gently Rolling = Good Drainage

The overlaying of both maps in a GIS resulted in a coincidence map and table showing the convergence of both themes. This was further reclassified to SRI suitability. This is by assuming that apped water control provided by light soils.

http://www.slideshare.net/SRI.COR NELL/0518-gis-evaluation-for-sri

by <u>SRI-Rice, CIIFAD, Cornell</u> <u>University</u> on *Aug 03, 2009*

REGION	HS+GD	LS+GD	HS+PD	LS+PD	TOTAL
CAR	10,118.27	4,143.15	14,358.02	4,891.39	33,610.82
I	12,128.82	4,426,84	46,938.27	94,832.57	158,326.50
Ш	49,249.10	12,048.55	151,354.39	108,919.77	321,571.80
Ш	8,229.80	6,438.58	142,951.45	265,742.46	423,332.30
IN-A	20,398.52	9,413.67	34,681.42	13,178.92	77,662.53
IV-8	7,960.01	2,353.20	29,418.66	30,392.51	70,124.38
٧	3,258.78	1,890.36	43,114.21	23,865.56	72,129.90
VI	13,036.90	3,919.93	76,090.26	25,683.54	118,730.63
VII	3,314.49	3,057.81	3,715.25	6,501.74	16,599.28
VIII	6,645.62	4,419.92	50,032.58	18,611.76	79,709.88
D.	9,700.80	2,410.57	14,871.66	8,977.74	36,040.78
Х	39,010.79	1,391.91	47,013.68	7,791.83	95,208.22
XI	8,426.39	1,083.63	117,831.96	18,482.49	145,824.47
XII	34,188.16	5,936.14	65,659.96	72,398.71	178,182.96
XIII	7,968.84	5,358.45	19,315.75	42,157.20	74,800.24
ARMM	1,276.20	3,878.50	51,798.77	20,101.70	77,055.17
TOTAL	232,030.21	69,713.24	851,961.19	749,200.06	1,902,904.70

Calculating SRI suitability Index

Soil Suitability Map

Soil Texture: Heavy and Light Drainage : Poor and Good Slope: Flat PH : 6.5 – 7.5

Light soils with good drainage

Heavy soils with poor drainage

Irrigated Rice Area map – overlaid on rice area map classified from LISS III image

Estimated irrigated Rice area -284990 ha Reported Values -273430 ha 4% overestimation

Suitable area for SRI cultivation in Nalgonda district - 219442 ha Further efforts are in progress to delineate areas in the state as we as in the country.

- •Grain Yield increase by 10% in SRI
- Water Use decreased by 29% (SRI 79 Cum)
 Water Productivity by 20%

Water productivity as influenced SRI vs

Current status of SRI adoption

State	Appox. Area (000'ha)
Bihar	750
Tamil Nadu	500
Tripura	80
Karnataka	10
Andhra Pradesh	10 (150)
Orissa	10
West Bengal	10

India: Bihar State results, 2007-2011								
State average yield: 2.3 t/ha								
	2008	2009	2010	2011				
Climatic conditions	Normal rainfall	Water submergence occurred twice	Drought, but rainfall in Sept.	Complete drought				
No. of smallholders	128	5,146	8,367	19,911				
Area under SRI (ha)	30	544	786	1,412				
SRI ave. yield (t/ha)	10.0	7.75	6.5	3.22*				
Conv. ave. yield (t/ha)	2.7	2.36	2.02	1.66*				

Results from measurements from SRI and conventional fields of 74

farmers'

Visit to Bihar to assess rice productivity in SRI demonstration plots in farmers' fields (Date of visit – November 27 – 29 th , 2012)								
Methods	Population/m 2	Panicle/plant	Grain weight (%) of moisture	Grain weight at 14% moisture (t/ha)	Straw weight at			
SRI Crop cut at I st village	12	25	9.0 (26.5)	7.2	9.0			
SRI Crop cut at 2 nd village	10	35	9.8 (16.5)	9.0	9.8			
Conventional	25	16-19	4.2 (21.0)	3.75	6.7			

 \checkmark Lot of variation in the adoption of SRI principles even in the demonstration plots.

✓ Farmers planted 15 -25 days old seedlings with planting density of 9 – 12 hills per sq,m, (spacing 40x30, 43x35, 35x33, 35x35 cm), with nil to very little organic manuring, and cono weedings of 0 – 2 times.
✓ Fertilizer management ranged widely and was about 60 - 80:15 - 25:10 - 20 kg /ha of NPK. About 300 – 400 kg /ha of Vermi compost

Salient findings on SRI

- In trials of AICRIP centers across the locations and situations, SRI method performed well and found superior over Conventional flooded irrigation
- Different principles studies were also found to influence on grain yield
- Varietal performance was different in SRI however most of the varieties tested found promising in SRI over conventional method. Hybrids and medium duration cultivars were promising
- Total number of effective tillers , SPAD values at different growth stages panicle length dry matter and other yield attributes are higher in SRI.
- Root biomass per plant, Microbial biomass carbon was found higher in SRI
- Water quantity for irrigation reduced by 25-30 % there by enhanced water productivity in SRI in different seasons
- Long term trails on nutrient management in SRI indicated that there is no depletion of nutrients from soil due to continuous SRI cultivation

Strategies for upscaling SRI adoption

- Identification of areas suitable for SRI adoption
- Conducting compact block frontline demonstrations
- Imparting training to farmers and farm labourers
- Hands on support for implementation
- Creating awareness through print and electronic media
- Developing mechanized cono weeder to reduce drudgery in weeding
- Labour saving mechnisation
- Promoting organic manure production at Farmer level (Vermi compost , Green manure crops , etc.,)

Total rice area 42.5 m.ha.

- Area under irrigation 20 m.ha.
- Proposed area to be covered under SRI (25% of irrigated area) – 5 m.ha.
- Proposed states for adoption (A.P., T.N., Karnataka, M.P., U.P., Bihar, W. B., Tripura, Jharkhand, Punjab, Sikkim, J& K.)

Proposed area to be covered under SRI by next 5-years

- Initial resistance to go for planting young seedling
- Difficulties in weeding and non-availability suitable cono weeders
- Non-availability of enough quantity of organic manures
- Lack of proper control of water especially under canal irrigation and under bore wells due to electricity problem
- Poor drainage in heavy rainfall areas also affects SRI adoption
- Trained personnel and proper support

Constraints in adoption of SRI

Impact of SRI in India

By taking in to account all the factors that determine the adoption of SRI such as proper locations, soil conditions, water control facilities etc., it may be possible to cover about 10% of total rice area (about 4.0 m ha) in India which can bring about tremendous benefits for the country in terms of input use efficiency and sustainability.

There could be enormous saving in seed (80,000 tonnes of seeds annually equivalent to RS.200 crores per season) and the system also helps us to save about 30% water which is equivalent to 2200 million m³ besides, soil health improvement which would be a biggest bonus in adopting SRI

- Systematic assessment of the advantages of SRI in different situations and effect of SRI on the physiology of the rice crop to make suitable modifications
- Long term Dynamics of the soil biological fertility and its effect on enhancing grain yield , pests and disease occurrence under SRI
- Standardization the inter-cultivation with weeder and development of the motorized weeders (cost effective)

Research focus

- Suitable growing ecosystem, season and varieties have to be identified for SRI and its popularization
- Studies on methane and GHG in different methods to mitigate the effects of climate change
- Soil water balance studies and water saving in SRI in different soils and situations
- Socio- economic impact , gender issues , labour utilization in SRI

Contd..

Influence of different water depths on water productivity and % of water saving over flood

Perched water tube – measurement

PWT = H - Reading

- PWT = depth of perched water table
- H = Reference Ht from soil surface to the top of the tube

Field water measurements-Perched water tube

Fixing AWD pipe in Farmers Filed

F2 plot- ICRISAT

Farmer's field visit & AWD pipe

can lead to increased productivityIN FARMER

