Research on System of Rice Intensification (SRI) in India and Priorities for the Future

B.C. VIRAKTAMATH Project Director

Directorate of Rice Research Hyderabad-500 030, India

E- mail: bcvmath@drricar.org

Rice in India

- A staple food for >70% Indians, and it holds the key for food security
- Grown on 43 m. ha with a production of 93 million tons
- Occupies 25% of India's cropped area and contributes about 24% to agric. GDP
- Earns about Rs. 7,000 crores of foreign exchange
- Under NFSM, rice production is to be increased by 10 million tons by 2011-12

Challenges for enhancing rice production in India

- Plateauing rice yields
- Declining resource base

- Deteriorating soil health
- Increasing environmental concerns
- Increasing cost of cultivation

Among these, water is becoming a critical factor and will become scarcer and scarcer

Rice and Water

80% of fresh water is used for agriculture

- More than 50% of this is consumed by the rice crop
- Rice presently requires about 4000-5000 liters of water to produce 1 kg of grain
- Improvements in irrigated rice cannot be ignored as it contributes significantly to food security
- The need of the hour is to improve water use efficiency of the rice crop

Water-saving strategies and options in rice cultivation

Genetic approaches

Designing water-use efficient varieties and hybrids

Management approaches

- o Zero tillage
- Alternate wetting and drying (AWD)
- o Raised bed method
- Direct seeding
- Aerobic rice
- Integrated Crop Management (ICM)
- o System of Rice Intensification (SRI)

What is SRI ?

 A set of modified practices for growing rice developed in Madagascar in 1983-84 by Father Henri Laulanié

Features	

Planting young seedlings	8 – 12 days old
Planting single seedling/hill	Along with soil mgmt
Wider spacing	25 cm x 25 cm
Organic manuring	Compost, GM, straw
No standing water until PI stage	Alternate wetting and drying
Aerated soil	Weeding by cono-weeder

Claims of SRI method

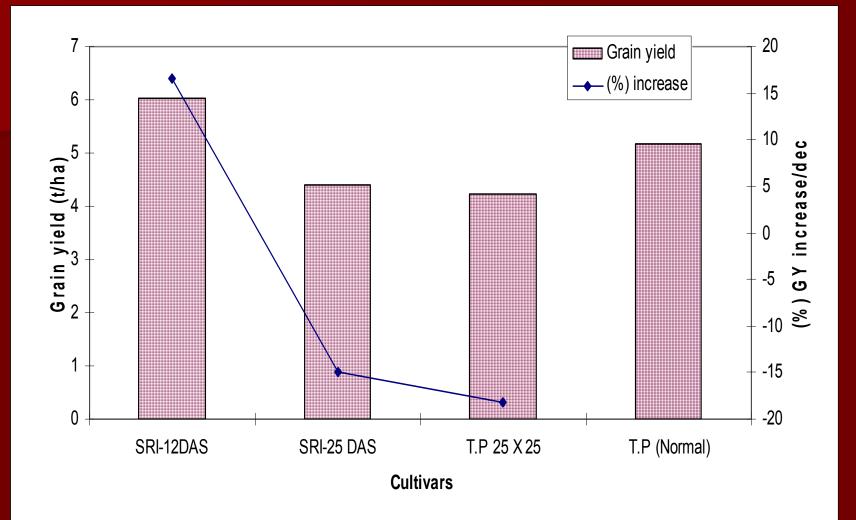
- > Very high yields
- > Water saving (up to 50%)
- > Improved soil health
- > Improved input-use efficiency
- > Lower seed requirement
- Reduced duration of the crop

Improved grain quality parameters

Activities of DRR

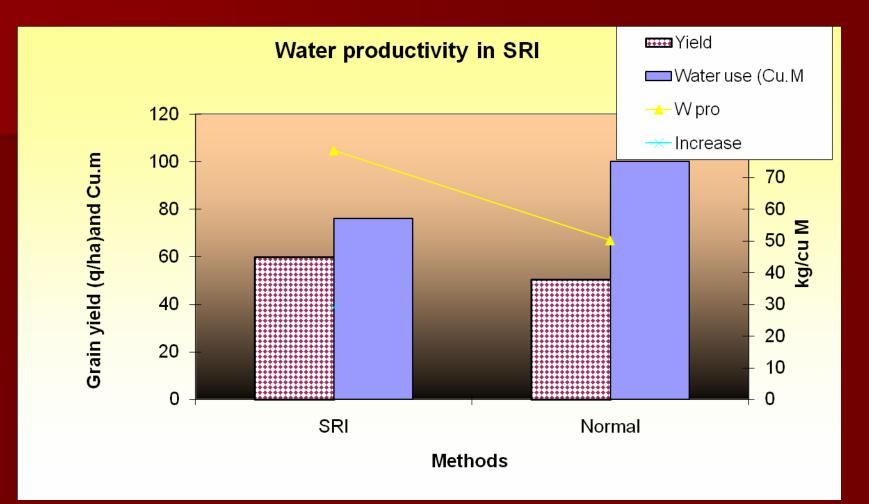
- Lead in research activities
- SRI trials across the country under AICRIP
- Organizing model training courses
- Technical co-operation with WWF and NGOs
- Bringing out publications on SRI

Results of DRR Trials

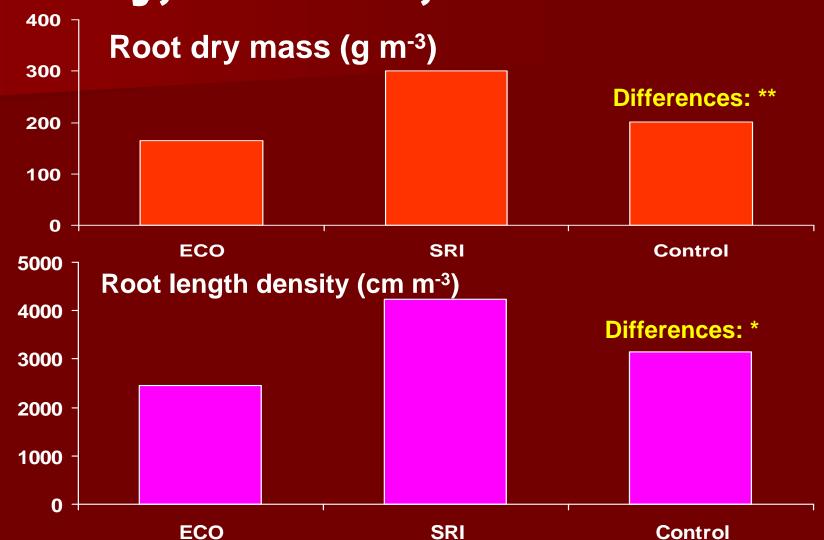

- Yields in SRI trials were 16.6% higher than with normal transplanting
- Hybrids performed better than varieties under SRI
 - Hybrids Yield increase was 46 48%
 - HY Varieties Yield increase was 5 17%

SRI with young seedlings was the best method as compared to SRI with 25 day-old seedlings and normal planting with wider spacing

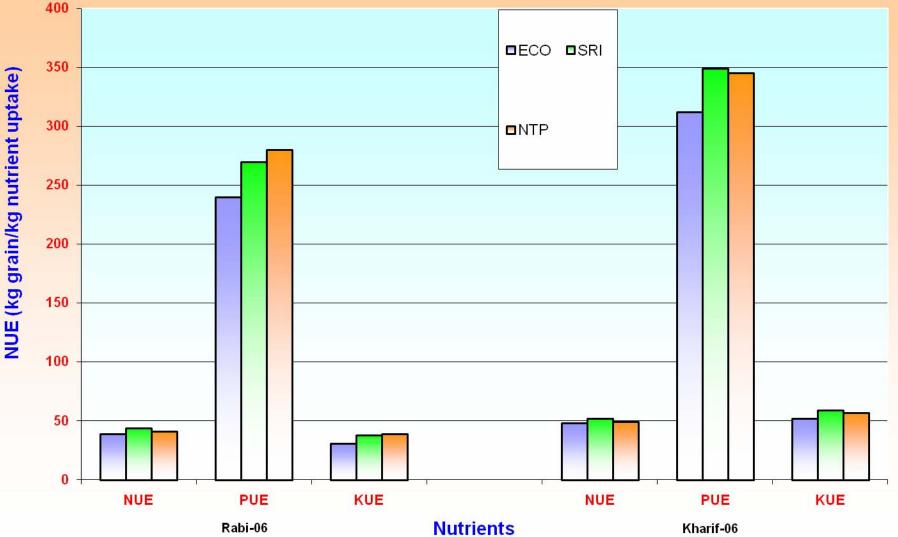
 Soil biology effects: SRI plots generally had higher MBC, MBN and dehydrogenates (by 7-25%), but only in the post- rainy season



Grain yields under different methods of crop establishment



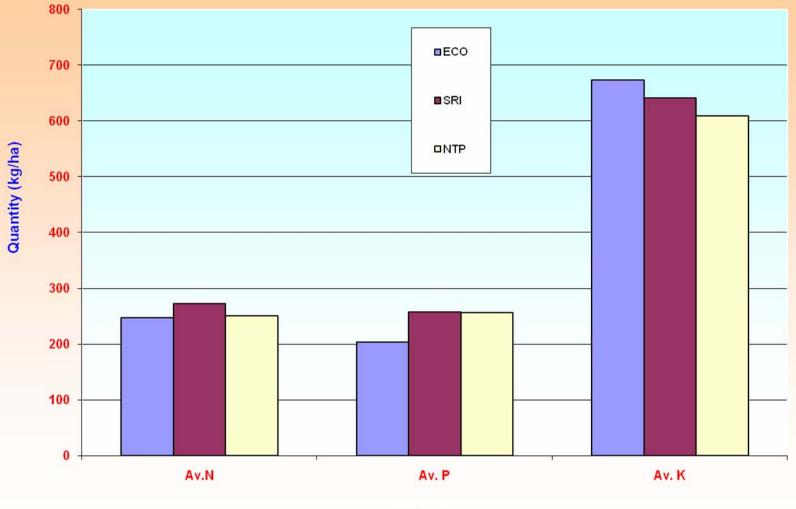
Water productivity as influenced by SRI vs. normal (flooded rice)


Grain yield increase by 10% in SRI
Water use decreased by 29% (SRI 79 Cum)
Water productivity increased by 20%

Mean Root Mass and Root Length Density, Rabi 2006, in DRR Fields

Root dry mass and root length density were higher in SRI

Nutrient use efficiency (NUE) under different treatments


In general, SRI recorded higher nutrient use efficiency

Soil available nutrients (kg/ha) after 2 seasons

Methods	Available N	Available P ₂ O ₅	Available K ₂ O
ECO-SRI	247	204	674
SRI	272	258	641
NTP	251	256	609
CD (0.05)	NS	26	35

Available nutrients remained same in SRI and NTP

Soil available nutrients after 2 seasons

Nutrient

Nutrients status with SRI

Plants from plots of flooded rice were pale green (indicating lower SPAD or chlorophyll values); SRI plants were generally darker green SRI recorded significantly higher SPAD values (40.08) as compared to conventional (36.03) and SRI-Eco trials (35.44) indicating more N uptake and chlorophyll content

One of the yield-enhancing parameters

Multi-location trials on SRI

Comparison among the following methods (*Kharif* 2004 -07)

System of Rice Intensification (SRI)

Integrated Crop Management (ICM)

Normal Transplanting (NTP)

Details of the treatments

SRI

- 5 kg/ha seed rate
- Fertiliser as per recommendation (organic + inorganic)
- Weeding by cono weeder
 2-3 times
- Reduced water application
- Varieties: HYVs and hybrid

Conventional method

- 30 kg/ha seed rate
- Same

- Weeding by manual labour
- Flooding the fields
 - Same

Multilocation Trials on SRI under AICRIP

*** Conducted during kharif 2004 to 2007 seasons**

Number of Locations - 21

State	Location
Andhra Pradesh	Rajendranagar (Hyderabad)
Assam	Karimgunj, Titabar
Bihar	Patna, Sabour
Chhattisgarh	Jagdalpur
Gujarat	Nawagam
Himachal Pradesh	Malan
Jharkhand	Ranchi
Karnataka	Mandya, Siriguppa

Contraction Multilocation Trials on SRI under AICRIP

State	Location
Orissa	Chiplima
Punjab	Kapurthala
Pondicherry	Karaikal
Tamil Nadu	Aduthurai, Coimbatore
Tripura	Arundhatinagar
Uttar Pradesh	Varanasi
Uttaranchal	Pantnagar, Almora
Meghalaya	Umiam

Summary of Multi-location trials (2004-07)

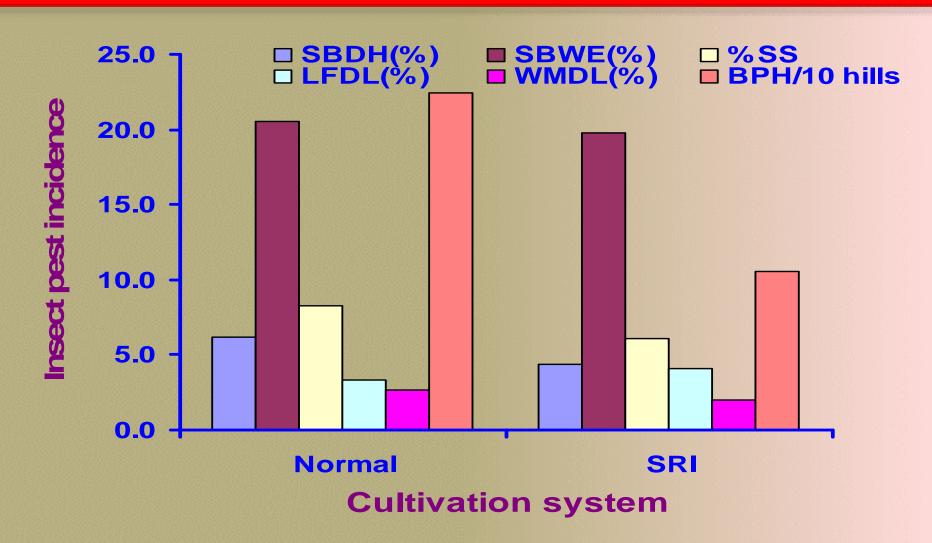
Item	Yield Advantage	No. loca- tions	Names of the locations
SRI>NTP	5 - 65.2 %	19	ADT, ARI, ARD, JGD, KRT, PTN, RNG, SRG, TTB, CHT, CBT, PNT, UMM, MLN, MND, MTU, NWG, PSA
ICM>STD	5 - 42 %	17	TTB, SRG, RNC, PTA, KJT, CHP, ARI-R'Nagar, ADT, UMM, PNT, CBT, PSU, NWG, MND, MLN, KJT, JDP
SRI>ICM	5 - 10 %	17	SRG, RNC, PTN, NWG, ARD, ARI, RPR, KRJ, JGD, CHT, ADT, UPS, PDY, MTU, MND, CBT, ALM
ICM>SRI	5 - 10%	5	KRK, KRG, CHP, SBR, KPT
STD>SRI	5 - 10%	3	KPT, KRK, SBR

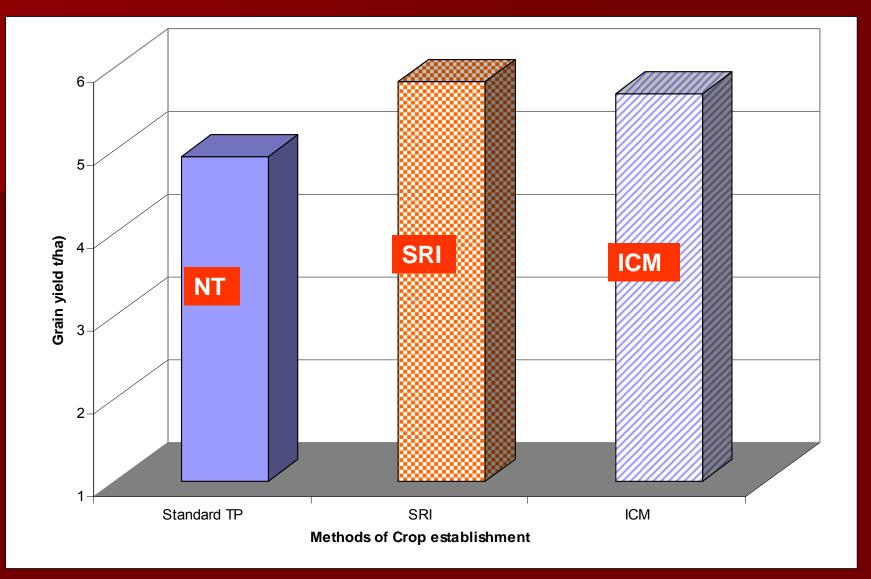
Mean Grain Yield Increase under SRI and ICM over NTP

Year/ Season	SRI>NTP	ICM>NTP
Kharif 04	12.0	10.0
Kharif 05	7.0	5.0
Kharif 06	12.0	6.0
Kharif 07	20.5	14.1
Overall GY	12.6	8.8

Multilocation Evaluation of SRI

- Treatment differences were significant at 18 locations
- SRI gave higher yield (7.0 to 42%) compared to control at 11 locations with a mean of 12.0%
- SRI was better than ICM at 3 locations
- SRI and ICM were on par at 4 locations
- ICM was better than SRI at Coimbatore and Aduthurai
- NTP was better than SRI at Kapurthala and Malan





Insect pest incidence

Paper presented in 3rd National symposium on SRI at Coimbatore, 1-3 December 2008

Average grain yield under different methods

Contd....

- Yield increase was due to increased panicle number/unit area
- Performance of SRI was better in Southern and Central India
- SRI yields under clay loam soils were higher than sandy loam soils
- Yield increase of SRI method under acidic soils was higher than under alkaline soils
- SRI method is suited to late transplanting (up to August)

Major constraints experienced at operational level

- Initial resistance to planting young seedlings
- Difficulties in weeding
- Non-availability of suitable cono weeders at right time
- Non-availability of organic manures
- Difficulties in proper control of water
- Poor drainage in heavy rainfall areas

Research priorities for the future

- Delineate areas most suitable for adoption of SRI
- Identify the varieties/hybrids that are most suitable for SRI practice
- Development of machinery for weeding, planting and harvesting
- Detailed studies on nutrient and microbial dynamics of soil health aspects of SRI
- Quantification of saving in water and other inputs
- Efficient production of organic materials for soil fertility management
- Studies on SRI vis-à-vis disease and pest management
- Standardization of eco-friendly methods of pest and disease management with SRI

Conclusions

- Performance of SRI is location-specific
- Varieties respond differentially to this method
- SRI is a water- and seed-saving methodology
- SRI can be a best option to promote hybrid rice as hybrids perform better under SRI, and it can help farmers save significantly on hybrid seed costs
- SRI has potential to improve soil health and give environmental protection
- Further research is needed to understand the factors contributing to higher yield, soil health parameters, and various aspects of sustainability

