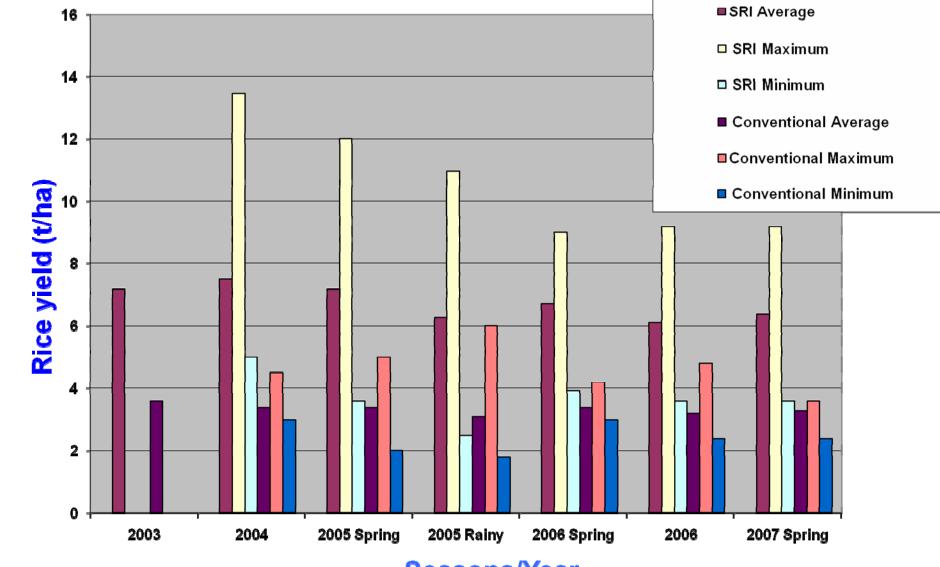
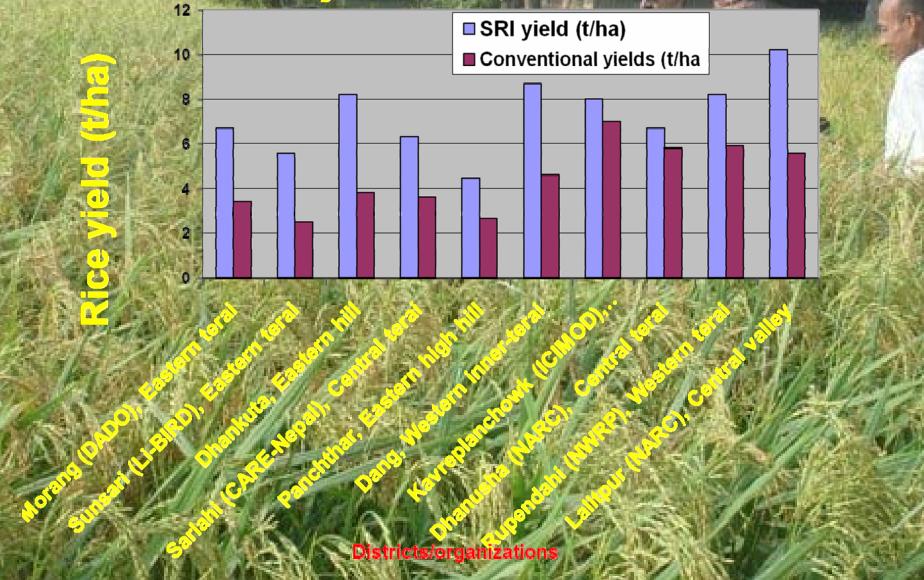
# System of Rice Intensification (SRI) Experiences of Nepal


Presented by Rajendra Uprety District Agriculture Development Office Morang, Nepal Email: upretyr@yahoo.com: car

| F                                                      | Rice in Ne  | epal (2007)          |                         |          |  |  |  |
|--------------------------------------------------------|-------------|----------------------|-------------------------|----------|--|--|--|
| Total Area: 1,439,525 ha<br>Production: 3,680,838 tons |             |                      |                         |          |  |  |  |
|                                                        | roductivity | 2 557 tons/          |                         |          |  |  |  |
| Region                                                 | Area (ha)   | Production<br>(tons) | Productivity<br>(kg/ha) | Se de la |  |  |  |
| Mountain                                               | 62,263      | <b>120,172</b>       | 1,930                   | FOR LYN  |  |  |  |
| Hills                                                  | 367,710     | 933,852              | 2,540                   |          |  |  |  |
| Terai (plains)                                         | 1,009,552   | 2,626,815            | 2,602                   |          |  |  |  |

## SRI in Nepal: Reports from 30 districts


Number of SR farmers: about 6,000 Area under SRI: about 1,000 hectares Organizations involved: Government agencies: DADOs, Irrigation **Dept. offices, Poverty Alleviation Fund,** NARC, etc. Non-governmental organizations: ICIMOD, CSP/DFID, Care-Nepal, Li-BIRD, SAPROS, Surya Nepal, ATA, SAGOL; etc.

# Comparative yields with SRI and conventional methods, Morang district, Nepal, 2003-2007



**Seasons/Year** 

#### Average SRI vs. conventional yields, by district, 2005/06



Crop duration (from seed to seed) of different rice varieties using SRI methods compared with conventional methods (in days)

| Varieties        | Conventional duration | SRI duration  | Difference |
|------------------|-----------------------|---------------|------------|
| Bansdhan/Kanchhi | 145                   | 127 (117-144) | 18 (28-11) |
| Mansuli          | 155                   | 136 (126-146) | 19 (29-9)  |
| Swarna           | 155                   | 139 (126-150) | 16 (29-5)  |
| Sugandha         | 120                   | 106 (98-112)  | 14 (22-8)  |
| Radha 12         | 155                   | 138 (125-144) | 17 (30-11) |
| Barse 3017       | 135                   | 118           | 17         |
| Hardinath 1      | 120                   | 107 (98-112)  | 13 (22-8)  |
| Barse 2014       | 135                   | 127 (116-125) | 8 (19-10)  |

# Highest yield produced by different varieties with combinations of different SRI practices, 2005/06

| Varieties   | Reduction<br>in<br>duration<br>(days) | Highest<br>yield (t/ha) | Age of<br>seedling<br>(days) | Spacing<br>(cm) | Days for first<br>weeding after<br>transplanting |
|-------------|---------------------------------------|-------------------------|------------------------------|-----------------|--------------------------------------------------|
| Bansdhan    | 23                                    | 11.0                    | 11                           | 25x25           | 15                                               |
| Mansuli     | 15                                    | 9.9                     | 9                            | 30x30           | 19                                               |
| Swarna      | 19                                    | 9.0                     | 11                           | 25x25           | 28                                               |
| Sugandha    | 8                                     | 7.0                     | 9                            | 20x20           | 11                                               |
| Radha 12    | 25                                    | 9.6                     | 11                           | 25x25           | 16                                               |
| Hardinath 1 | 11                                    | 8.4                     | 11                           | 20x20           | 8                                                |

# Average cost, returns, and net profit, by different cultivation methods, 2006/07

| Production system<br>(Methods used/<br>water supply) | Yield<br>(kg/<br>ha<br>) | Total<br>costs<br>(Rs/ha) | Returns<br>from<br>grain<br>(Rs/ha) | Returns<br>of by-<br>product<br>(Rs/ha) | Gross<br>income<br>(Rs/ha) | Net<br>profit<br>(Rs/ha) | Costs of<br>produc-<br>tion<br>(Rs/kg) | Output/<br>input<br>ratio |
|------------------------------------------------------|--------------------------|---------------------------|-------------------------------------|-----------------------------------------|----------------------------|--------------------------|----------------------------------------|---------------------------|
| Improved/<br>irrigated (terai)                       | 3,870                    | 22,119                    | 34,857                              | 7,055                                   | 41,912                     | 19,793                   | 3.89                                   | 1.9                       |
| Improved/<br>unirrigated (terai)                     | 3,467                    | 21,590                    | 28,781                              | 8,946                                   | 37,727                     | 16,137                   | 3.65                                   | 1.7                       |
| SRI/terai                                            | 9,839                    | 17,095                    | 99,105                              | 5,162                                   | 104,267                    | 87,172                   | 1.21                                   | 6.1                       |
| SRI/hills                                            | 11,127                   | 27,599                    | 114,051                             | 7,531                                   | 121,582                    | 93,983                   | 1.80                                   | 4.4                       |
| SRI /manual<br>weeding (Morang)                      | 6,400                    | 23,205                    | 64,465                              | 6,500                                   | 70,965                     | 47,760                   | 2.61                                   | 3.1                       |
| SRI / mechanical<br>weeding (Morang)                 | 7,800                    | 21,175                    | 79,949                              | 6,550                                   | 86,499                     | 65,324                   | 1.87                                   | 4.1                       |

Factors influencing adoption in different types of rice farming systems in Nepal

#### Ave. rice areas of individual SRI farmers under SRI and non-SRI methods in Morang and Dhankuta districts, Nepal (2008)

| VDC (district)       | Total rice area<br>(Katha)** | SRI area<br>(Katha) | Non-SRI area<br>(Katha) |
|----------------------|------------------------------|---------------------|-------------------------|
| Jhorahat (Morang)    | 31 (4-64)                    | 5 (3-11)            | 26 (0-60)               |
| Pakhribas (Dhankuta) | 23 (20-25)                   | 3 (2-5)             | 21 (2-22)               |
| Indrapur (Morang)    | 33 (3-70)                    | 11 (2-30)           | 24 (0-62)               |

\*\* Katha= 333 square meters

#### Average land ownership status of SRI farmers and SRI areas in Morang and Dhankuta districts, Nepal (2008)

| VDC       | Total rice<br>area<br>(Katha) | Own land<br>(Katha) | Rented<br>Iand<br>(Katha) | SRI areas<br>(Katha) | SRI as<br>% of<br>own<br>land |
|-----------|-------------------------------|---------------------|---------------------------|----------------------|-------------------------------|
| Jhorahat  | 31                            | 9<br>(4-20)         | 40<br>(20-60)             | 5<br>(3-11)          | <b>56</b>                     |
| Pakhribas | 23                            | 19<br>(11-25)       | 12                        | 3<br>(2-5)           | 16                            |
| Indrapur  | 33                            | 16<br>(1-50)        | 27<br>(10-50)             | 11<br>(2-30)         | 69                            |

## Age of seedings used by SRI and non-SRI farmers in Morang and Dhankuta districts, Nepal (2008)



### **Technical constraints for SRI in Nepal**

- Land ownership
- > Availability of irrigation facilities
- Distance of rice land from the residence
- Availability of seasonal farm labor (family/hire)
- Weeder availability/weed management system
- Family income sources (farm vs. non-farm)
- Time/season of rice transplanting (early/late)
- Investment in rice farming

## **Socio-political constraints for SRI**

- Initial failure of SRI trials at NARC station in 1999
- Resistance of NARC to be involved inSRI evaluation
- Decade-long political struggle and political instability
- Threats to government officials from rebels against government activities in rural areas
- Government's concentration on and priority to political matters and peace process more than development activities
- Difficulties for movement due to strikes and uncertainties for safe travel within the country
- Weak support system for knowledge, tools, and equipment

#### Conclusions

- 1. We now know that SRI can perform better than conventional methods in many ways. Main factors making SRI important for a country like Nepal are: earlier maturity (17 days), less seed requirement (by 90%), less water requirement, less production cost, all with more yield (>60%)
- 2. Still, there are also various problems that impede the wider dissemination of SRI in Nepal: unreliable irrigation facilities, shortages of labour, unavailability of mechanical weeders, distances of rice fields from the residence, and farmers' work calendar and other demands

#### **Conclusions (continued)**

3. Country's political situation in the past and negligible government support have also slowed SRI movement in Nepal

4. Stakeholders' concentration and coordination of efforts on more reliable irrigated areas, with supply of mechanical weeders and technical support for SRI movement, will speed spread

5. SRI is also influencing conventional rice farming in those areas where SRI will be less feasible; this is assisting the increase in rice productivity



#### More tillers from s

Big and healthy root system

More panicles per hil

seed to

.

#### Farmer-made markers and weeders facilitate SRI

# SRI Trathing

2006 7 12

Himal Khabarpatrika

#### **Nepali TIMES**

#### National and international journalists visit SRI fields in Morang

#### **Channel Nepal**

**BBC World Service** 

#### Mekie Netherlands

#### Prof. Prachanda Pradhan, Nepal

Prof. Norman Uphoff

#### National and international scientists visit SRI fields in Morang

**Prof. John Duxbury and Dr. Julie Lauren, Cornell** 

